Join any G-TechEd Module and get a Calling (SIM) Tab along with your study material & G-Dream Service. For more information about G-TechEd Module Write us : info@gtechnosoft.in

Sunday, March 2, 2014

Virtual Private Network (VPN) - At a glance

Virtual Private Network (VPN)


A virtual private network (VPN) is a network that uses a public telecommunication infrastructure, such as the Internet, to provide remote offices or individual users with secure access to their organization's network. A virtual private network can be contrasted with an expensive system of owned or leased lines that can only be used by one organization. The goal of a VPN is to provide the organization with the same capabilities, but at a much lower cost.

A VPN works by using the shared public infrastructure while maintaining privacy through security procedures and tunneling protocols such as the Layer Two Tunneling Protocol (L2TP). In effect, the protocols, by encrypting data at the sending end and decrypting it at the receiving end, send the data through a "tunnel" that cannot be "entered" by data that is not properly encrypted. An additional level of security involves encrypting not only the data, but also the originating and receiving network addresses.

A virtual private Network (VPN) extends a private network across a public network, such as the Internet. It enables a computer to send and receive data across shared or public networks as if it were directly connected to the private network, while benefiting from the functionality, security and management policies of the private network. This is done by establishing a virtual point-to-point connection through the use of dedicated connections, encryption, or a combination of the two.

A virtual private network connection across the Internet is similar to a wide area network (WAN) link between the sites. From a user perspective, the extended network resources are accessed in the same way as resources available from the private network.

VPNs allow employees to securely access their company's intranet while traveling outside the office. Similarly, VPNs securely and cost-effectively connect geographically disparate offices of an organization, creating one cohesive virtual network. VPN technology is also used by ordinary Internet users to connect to proxy servers for the purpose of protecting one's identity.

Early data networks allowed VPN-style remote connectivity through dial-up modems or through leased line connections utilizing Frame Relay and Asynchronous Transfer Mode (ATM) virtual circuits, provisioned through a network owned and operated by telecommunication carriers. These networks are not considered true VPNs because they passively secure the data being transmitted by the creation of logical data streams. They have given way to VPNs based on IP and IP/Multiprotocol Label Switching Networks (MPLS), due to significant cost-reductions and increased bandwidth provided by new technologies such as Digital Subscriber Line (DSL) and fiber-optic networks.

VPNs can be either remote-access (connecting an individual computer to a network) or site-to-site (connecting two networks together). In a corporate setting, remote-access VPNs allow employees to access their company's intranet from home or while traveling outside the office, and site-to-site VPNs allow employees in geographically disparate offices to share one cohesive virtual network. A VPN can also be used to interconnect two similar networks over a dissimilar middle network; for example, two IPv6 networks over an IPv4 network.

VPN systems classified by:

  • The protocols used to tunnel the traffic.
  • The tunnel's termination point location, e.g., on the customer edge or network-provider edge.
  • Whether they offer site-to-site or remote-access connectivity.
  • The levels of security provided.
  • The OSI layer they present to the connecting network, such as Layer 2 circuits or Layer 3 network connectivity.

Authentication Process:

  • Tunnel endpoints must authenticate before secure VPN tunnels can be established.
  • User-created remote-access VPNs may use passwords, biometrics, two-factor authentication or other cryptographic methods.
  • Network-to-network tunnels often use passwords or digital certificates. They permanently store the key to allow the tunnel to establish automatically, without intervention from the user.

From the security standpoint, VPNs either trust the underlying delivery network, or must enforce security with mechanisms in the VPN itself. Unless the trusted delivery network runs among physically secure sites only, both trusted and secure models need an authentication mechanism for users to gain access to the VPN.



No comments:

Post a Comment